Postsynaptic Odorant Concentration Dependent Inhibition Controls Temporal Properties of Spike Responses of Projection Neurons in the Moth Antennal Lobe
نویسندگان
چکیده
Although odorant concentration-response characteristics of olfactory neurons have been widely investigated in a variety of animal species, the effect of odorant concentration on neural processing at circuit level is still poorly understood. Using calcium imaging in the silkmoth (Bombyx mori) pheromone processing circuit of the antennal lobe (AL), we studied the effect of odorant concentration on second-order projection neuron (PN) responses. While PN calcium responses of dendrites showed monotonic increases with odorant concentration, calcium responses of somata showed decreased responses at higher odorant concentrations due to postsynaptic inhibition. Simultaneous calcium imaging and electrophysiology revealed that calcium responses of PN somata but not dendrites reflect spiking activity. Inhibition shortened spike response duration rather than decreasing peak instantaneous spike frequency (ISF). Local interneurons (LNs) that were specifically activated at high odorant concentrations at which PN responses were suppressed are the putative source of inhibition. Our results imply the existence of an intraglomerular mechanism that preserves time resolution in olfactory processing over a wide odorant concentration range.
منابع مشابه
Functional Differences between Global Pre- and Postsynaptic Inhibition in the Drosophila Olfactory Circuit
The Drosophila antennal lobe is subdivided into multiple glomeruli, each of which represents a unique olfactory information processing channel. In each glomerulus, feedforward input from olfactory receptor neurons (ORNs) is transformed into activity of projection neurons (PNs), which represent the output. Recent investigations have indicated that lateral presynaptic inhibitory input from other ...
متن کاملCorrection: Temporal Features of Spike Trains in the Moth Antennal Lobe Revealed by a Comparative Time-Frequency Analysis
The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To identify these temporal features, we have developed an analysis that allows the comparison of statistically significant features of spike trains localized ov...
متن کاملOdorant concentration differentiator for intermittent olfactory signals.
Animals need to discriminate differences in spatiotemporally distributed sensory signals in terms of quality as well as quantity for generating adaptive behavior. Olfactory signals characterized by odor identity and concentration are intermittently distributed in the environment. From these intervals of stimulation, animals process odorant concentration to localize partners or food sources. Alt...
متن کاملDevelopmental changes in the density of ionic currents in antennal-lobe neurons of the sphinx moth, Manduca sexta.
Early in metamorphic adult development, action potentials elicited from Manduca sexta antennal lobe neurons are small in amplitude, long in duration, and calcium dependent. As development proceeds, the action potential waveform becomes larger in amplitude, shorter in duration, and increasingly sodium dependent. Whole cell voltage-clamp analysis of Manduca antennal-lobe neurons in vitro has been...
متن کاملA 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons.
A central problem facing studies of neural encoding in sensory systems is how to accurately quantify the extent of spatial and temporal responses. In this study, we take advantage of the relatively simple and stereotypic neural architecture found in invertebrates. We combine standard electrophysiological techniques, recently developed population analysis techniques, and novel anatomical methods...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014